Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116187

ABSTRACT

Monkeypox is caused by a DNA virus known as the monkeypox virus (MPXV) belonging to the Orthopoxvirus genus of the Poxviridae family. Monkeypox is a zoonotic disease where the primary significant hosts are rodents and non-human primates. There is an increasing global incidence with a 2022 outbreak that has spread to Europe in the middle of the COVID-19 pandemic. The new outbreak has novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involving the use of tecovirimat. However, there has otherwise been limited research interest in monkeypox. Mitoxantrone (MXN), an anthracycline derivative, an FDA-approved therapeutic for treating cancer and multiple sclerosis, was previously reported to exhibit antiviral activity against the vaccinia virus and monkeypox virus. In this study, virtual screening, molecular docking analysis, and pharmacophore ligand-based modelling were employed on anthracene structures (1-13) closely related to MXN to explore the potential repurposing of multiple compounds from the PubChem library. Four chemical structures (2), (7), (10) and (12) show a predicted high binding potential to suppress viral replication.


Subject(s)
COVID-19 , Monkeypox , Animals , Humans , Monkeypox virus , Monkeypox/diagnosis , Monkeypox/drug therapy , Molecular Docking Simulation , Mitoxantrone/pharmacology , Drug Repositioning , Pandemics , Receptors, Drug , Primates , Rodentia
2.
Chem Soc Rev ; 50(6): 3647-3655, 2021 Mar 21.
Article in English | MEDLINE | ID: covidwho-1057718

ABSTRACT

Clinically approved antiviral drugs are currently available for only 10 of the more than 220 viruses known to infect humans. The SARS-CoV-2 outbreak has exposed the critical need for compounds that can be rapidly mobilised for the treatment of re-emerging or emerging viral diseases, while vaccine development is underway. We review the current status of antiviral therapies focusing on RNA viruses, highlighting strategies for antiviral drug discovery and discuss the challenges, solutions and options to accelerate drug discovery efforts.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery/methods , Molecular Targeted Therapy/methods , Pandemics/prevention & control , RNA, Viral/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , Biological Products/pharmacology , COVID-19/prevention & control , COVID-19/virology , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL